مدل شبکه عصبی مصنوعی تبخیر ماهانه از تشت با استفاده از داده های هواشناسی- مطالعه موردی منطقه حاشیه دریای خزر
Authors
abstract
تبخیر یکی از مؤلفه های اصلی چرخه آب در طبیعت بوده و تعیین دقیق آن برای بسیاری مطالعات مثل بیلان آبی حوزه، طرح ریزی و مدیریت منابع آب حائز اهمیت است. تبخیر به دلیل اثرات متقابل عوامل متعدد اقلیمی، پدیده پیچیده و غیر خطی است و لذا برای تخمین آن باید از مدل های پیشرفته استفاده کرد. در این تحقیق، هشت نوع ترکیب پارامترهای هواشناسی بعنوان داده های ورودی برای برآورد تبخیر از تشت با استفاده از شبکه های عصبی برای منطقه شمال کشور مورد بررسی قرار گرفت. داده های اندازه گیری شده هواشناسی برای یک دوره ده ساله (1996 تا 2003) از 8 ایستگاه هواشناسی واقع در حاشیه دریای خزر جمع آوری شد. نتایج نشان داد، پارامترهای دمای بیشینه و کمینه هوا، رطوبت نسبی، سرعت باد و ساعات آفتابی، حداقل داده های هواشناسی برای برآورد تبخیر از تشت هستند. میانگین جذر مربع خطا (rmse) و ضریب تعیین (r2) بین مقادیر بدست آمده از مدل شبکه عصبی با ورودی های فوق و مقادیر واقعی به ترتیب 32/0 میلیمتر در روز و 93/0 بودند. ترسیم مقادیر برآورد شده و واقعی نشان داد، 76 درصد داده ها در محدوده %15± خطا واقع می شوند.
similar resources
برآورد تبخیر از تشت تبخیر ایستگاه سد تنظیمی دز با استفاده از روش شبکه عصبی مصنوعی
بیشتر بارندگی مناطق خشک و نیمه خشک بصورت تبخیر به جو باز می گردد پس تخمین تبخیر دربرآورد میزان آب در چرخه آب مهم خواهد بود. تبخیر وابسته به پارامترهای مختلفی است و برای برآورد آن نیاز به متغیرهای اقلیمی متفاوتی است و اثر متقابل این متغیرها بسیار پیچیده است لذا در بررسی آن باید روشهای دقیقی را بکار گرفت. در این تحقیق برای برآورد تبخیر از تشت ایستگاه سد تنظیمی دز از روش شبکه عصبی مصنوعی استفاده ش...
full textکاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی
برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار میرود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول میرسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از دادههای هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...
full textبررسی تغییرات دمایی سواحل جنوبی دریای خزر با استفاده از سه مدل LARSWG،SDSM و مدل شبکه عصبی مصنوعی
تغییرات اقلیمی که عمدتا منشأ انسانی دارد، پدیدهای است که طی 150سال اخیر بشر را تهدید میکند. سواحل دنیا یکی از آسیب پذیرترین نقاطی هستند که از این پدیده به شدت دگرگون شده اند. تحقیق حاضر میزان تغییرات دمای حداقل و حداکثر برای پنج ایستگاه سواحل جنوبی دریای خزر شامل انزلی، رشت، بابلسر، رامسر و گرگان را با استفاده از دو مدل LARS_WG, SDSM و یک مدل شبکه عصبی مصنوعی، طی دوره اقلیمی پایه 1990-19...
full textشبیه سازی سطح ایستابی دشت ملایر براساس داده های هواشناسی با استفاده از شبکهی عصبی مصنوعی
برای بررسی کارایی شبکهی عصبی مصنوعی در شبیهسازی تغییرات سطح ایستابی سفرهی آب زیرزمینی دشت ملایر، از اطلاعات هواشناسی ایستگاههای تبخیرسنجی در سطح دشت، حجم آب برداشتی از سفره و مقادیر سطح ایستابی آن استفاده شد. از این اطلاعات، بهعنوان ورودی شبکهی عصبی مصنوعی نوع پرسپترون چندلایه در چارچوب چهار ساختار اطلاعاتی استفاده شد. ساختار اوّل، شامل میانگین اطلاعات دمای حدّاکثر هوا، دمای حدّاقل هوا، حدّاک...
full textMy Resources
Save resource for easier access later
Journal title:
تحقیقات منابع آب ایرانجلد ۷، شماره ۲، صفحات ۷۱-۷۹
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023